Aerospace Brief Out

Heather Quinn (LANL), Tim Gallagher (Lockheed-Martin), Paul Armijo (General Dynamics), Ian Troxel (SEAKR), Rafi Some (JPL), Jim Lyke (AFRL-Kirtland), Eugene Normand (Boeing), Lori Bechtold (Boeing), Erik DeBenedictis (Sandia), and David Walker (Princeton)

Slide 1

Clarifications from Yesterday's Discussions

Radiation environments from sea level to space

- For avionics, for the most, the radiation environment is made of the same particles as sea level but more
- For space, the radiation environment is completely different protons and heavy ions
 - Protons have a very similar reaction to silicon as neutrons, but the flux is much higher than atmospheric neutrons
 - Heavy ions are not as common as protons, but devices are more sensitive to heavy-ion-induced radiation upsets (5-7 orders of magnitude more sensitive)

We do not actually want TMR

 We want systems that work and TMR is generally easy to use and can solve a lot of problems – not all problems, but enough

Commonality with Other Groups

Large-scale systems

- Parts that could be manufactured with different modes could be useful to both groups
- Stabilization problem is common to both groups it can take a few months to stabilize a small satellite
- There is a certain amount of momentum for putting national asset satellites and HPC on the same hardware and software – should we embrace that?
 - Combine design groups with HPC
 - Similar platforms will allow more adaptability
 - Would we get better hardware or would HPC get worse hardware?

Automotive/Military

- Devices with a wider operating temperature range on devices might be helpful to automotive and military industry
- Would collapse part of the problem for space

Consumer Electronics

- Despite the "100% tax", trying to find a common ground where increased fault tolerance would solve our reliability problems and solve some other problem for manufacturing consumer electronics (yield, degraded modes)
- Use consumer electronics as the dem/val and not space experiments FPGA in space programs started only after a decade of experimentation and usefulness for ground systems
- Question for the consumer group: why was ECC adopted?

UNCLASSIFIED

Slide 3

Discussion Points Around Adaptability

- We are interested in adaptability, but understand that the hosts might not be
- Agreed that some aerospace organization should attempt an adaptable payload experiment to prove to the hosts that adaptability would be useful for <u>payloads</u>
 - Leave control out of the discussion until a flight experiment is done
- Discussion around when would adaptability be useful and how to do it
 - As a group, we could embrace differential reliability spectrum better
 - Not all payloads are equal
 - Not all parts of the satellite subsystems are equal
 - As a group, we need to do or have work done on ways for software assist hardware and vice versa
 - Many satellites are light on software, maybe more software stack would be useful
 - Are interested in hardware that had input ports for different types of monitors (NBTI, space weather, etc) and output ports that inform software of problems

Discussion Points Around System-Level Designs

How does software reliability fit into the system?

- Looking at model-based validation or state-based software might be interesting
- Software integration is as bad as hardware integration, because every organization chooses their favorite tool

Would high level managers help?

The current systems are very stripped down – removes complexity, improves reliability (?), but also removes some avenues for adding adaptability or systemlevel reliability situations

Would abstraction help?

- Would software or programming language support help us abstract problems to a higher level?
- Would solving things at a higher level be easier?

