
Filtering…
Breakout Sessions

Session 1, scribe: Sani Nassif nassif@us.ibm.com
Session 2, scribe: Nick Carter nicholas.p.carter@intel.com



Overall

 First session struggled in the “bottom” 
layers.
 Circuits, gates, architecture…

 Second session focused on the “upper” 
layers.
 Software.

 Note: this happened with absolutely no 
planning on anyone’s part!

BSIM

Gate

Unit

Chip

Firmware

OS

PowerPoint



First Session

 Error detection should be the main focus.
 Once detected, it is relatively straightforward to do 

something about it. Many existing examples…
 Each level in the system handles and (perhaps) hides 

errors from those above it…
 Things like Bit Error Rate specifications define a contract 

for how much error can be expected or tolerated.
 Observation: logging of errors and exposing via 

appropriate interfaces to higher levels is a useful 
facility.

This came up
already…



Timely Filtering

 Faults are typically easier to solve “near” and “soon”.

 Waiting too long, or assuming the error has to 
propagate too far up means we may potentially lose 
the chance to fix it.
 So filtering needs to be cognizant of the time scale at which 

things happen.

 A hard drive going bad is different from a latch 
missing an edge.



Efficient Filtering

 Efficient in what?
 Design/Verification/Test time? No
 Number of transistors? No

 (some who are still stuck in the 90nm + world disagreed).

 Power… Yes!

 The cost of error detection and filtering is very 
application dependent.
 Implementations have to be such that they can be turned off 

completely, i.e. being zero overhead.



Second Session

 Applications will have different needs in terms of 
resilience and configurability.

 Q: when a hardware fault occurs, what get exposed to 
the software? How can this interface be managed?

 Observation: some (sophisticated) applications can 
directly handle faults at the user level.
 Example: database re-try.



Fault Detection Cost

 What is the cost of fault detection and diagnosis?
 This also came up in the open mike session…

 How much can software help by identifying critical 
code and data segments?
 How would such information be passed generically?

 Observation: systems are often more (most?) vulnerable 
when doing fault recovery…



Challenges (1)

 Detection in higher levels (Software) was not 
discussed -had too much fun at the µ-arch and below.

 One major challenge is being able to do complete 
system level fault simulation in a way that allows 
optimization of the error filtering across all the levels.
 Optimization for cost, power, resilience, etc…
 Getting overall efficiency in a cross-level solution means 

that we MUST retain low level accuracy in high level 
views!

 Difficult…



Challenges (2)

 An application focus needs to deal with a broad 
diversity of application needs. (open mike, again).

 Cost of recovery is clearly application dependent.

 Are there a set of golden benchmark cases of 
software resilience with specified performance, 
power, and robustness measures?
 If not, does it make sense to create such cases?



Challenges (3)

 Error detection for SRAM, various regular arrays, 
and data paths is challenging but doable.

 Error detection for random control logic is harder.
 Example: introducing parity prediction…

 Design Automation Challenge: automate the efficient 
insertion of parity prediction and management logic.
 This is already done, by hand, in current machines. We 

should be able to make quick progress on it!



Opportunities

 Are we doing all we can to analyze existing fail data 
to get estimates and trends?
 Something beyond planes and satellites…

 Example: mainframes (IBM Z class machines) routinely log 
failures in detail. Does it make sense to harvest this 
data and use it to drive more realistic metrics and 
trends?



Opportunities

 Creating a strawman resilience roadmap as part of the 
upcoming ITRS document can help drive research 
forward.

 DFM section already includes variability trends and 
hints at the morphing of extreme variability into 
“permanent” faults.
 Should be possible to extend to more general resilience.
 Who wants to help?


	Filtering…�Breakout Sessions
	Overall
	First Session
	Timely Filtering
	Efficient Filtering
	Second Session
	Fault Detection Cost
	Challenges (1)
	Challenges (2)
	Challenges (3)
	Opportunities
	Opportunities

